Anwendungen der Nanotechnologie in Pflanzenwachstum und Pflanzenschutz

Autorin Patricia Lefèvre

Anwendungen der Nanotechnologie in Pflanzenwachstum und Pflanzenschutz

Teil 1


Autorin: Dr. Patricia Lefèvre, Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon

Im Zeitalter des Klimawandels stehen die globalen Agrarsysteme vor zahlreichen, noch nie dagewesenen Herausforderungen. Um Ernährungssicherheit zu erreichen, ist fortschrittliche Nanotechnologie ein praktisches Werkzeug, um die Pflanzenproduktion zu steigern und Nachhaltigkeit zu gewährleisten. Die Nanotechnologie hilft, die landwirtschaftliche Produktion zu verbessern, indem sie die Effizienz von Betriebsmitteln erhöht und relevante Verluste minimiert. Nanomaterialien bieten eine größere spezifische Oberfläche für Düngemittel und Pestizide. Darüber hinaus ermöglichen Nanomaterialien als einzigartige Träger von Agrochemikalien die gezielte kontrollierte Abgabe von Nährstoffen mit erhöhtem Pflanzenschutz. Aufgrund ihrer direkten und beabsichtigten Anwendungen in der präzisen Steuerung und Kontrolle von Inputs (Düngemittel, Pestizide, Herbizide) unterstützen Nanotools, wie z.B. Nanobiosensoren, die Entwicklung von Hightech-Agrarbetrieben. Die Integration von Biologie und Nanotechnologie in Nanosensoren hat ihr Potenzial, Umweltbedingungen oder Beeinträchtigungen zu erkennen und zu identifizieren, stark erhöht.

1. Einleitung

Um den zunehmenden Herausforderungen einer nachhaltigen Produktion und Ernährungssicherheit zu begegnen, wurden in den letzten Jahren bedeutende technologische Fortschritte und Innovationen im Bereich der Landwirtschaft gemacht. Solche kontinuierlichen landwirtschaftlichen Innovationen sind entscheidend, um den steigenden Nahrungsmittelbedarf der explodierenden Weltbevölkerung durch den Einsatz von natürlichen und synthetischen Ressourcen zu decken. Insbesondere die Nanotechnologie hat das Potenzial, effektive Lösungen für die vielfältigen Probleme in der Landwirtschaft zu bieten. Um die Lücke zwischen Massenmaterialien und atomaren oder molekularen Strukturen zu schließen, sind Nanopartikel von großem wissenschaftlichem Interesse. In den letzten zwei Jahrzehnten wurde eine beträchtliche Menge an Forschungsarbeiten zur Nanotechnologie durchgeführt, wobei die zahlreichen Anwendungen in der Landwirtschaft im Vordergrund standen. Der Einsatz von Düngemitteln spielt eine zentrale Rolle bei der Steigerung der landwirtschaftlichen Produktion; der übermäßige Einsatz von Düngemitteln verändert jedoch irreversibel die chemische Ökologie des Bodens, wodurch die verfügbare Fläche für die Pflanzenproduktion weiter reduziert wird. Nachhaltige Landwirtschaft beinhaltet einen minimalen Einsatz von Agrochemikalien, die letztendlich die Umwelt schützen und verschiedene Arten vor dem Aussterben bewahren können. Nanomaterialien steigern die Produktivität von Nutzpflanzen, indem sie die Effizienz von landwirtschaftlichen Betriebsmitteln erhöhen, um eine gezielte und kontrollierte Zufuhr von Nährstoffen zu ermöglichen und so den minimalen Einsatz von landwirtschaftlichen Betriebsmitteln zu gewährleisten. In der Tat hat die Unterstützung der Nanotechnologie bei Pflanzenschutzmitteln exponentiell zugenommen, was eine Steigerung der Ernteerträge gewährleisten kann. Darüber hinaus besteht das Hauptanliegen in der landwirtschaftlichen Produktion darin, eine beschleunigte Anpassung der Pflanzen an die fortschreitenden Faktoren des Klimawandels wie extreme Temperaturen, Wassermangel, Salzgehalt, Alkalinität und Umweltverschmutzung mit toxischen Metallen zu ermöglichen, ohne die bestehenden empfindlichen Ökosysteme zu gefährden. Darüber hinaus hat die Entwicklung und Nutzung von Nanosensoren in der Präzisionslandwirtschaft zur Messung und Überwachung des Pflanzenwachstums, der Bodenbeschaffenheit, von Krankheiten, des Einsatzes und der Durchdringung von Agrochemikalien und der Umweltverschmutzung die menschliche Kontrolle der Boden- und Pflanzengesundheit, die Qualitätskontrolle und die Sicherheitssicherung wesentlich verbessert und damit einen großen Beitrag zu einer nachhaltigen Landwirtschaft und zu Umweltsystemen geleistet. Nanomaterial-Engineering ist die modernste Schiene der Forschung, die die Entwicklung von Hightech-Agrarbereichen unterstützt, indem sie eine größere spezifische Oberfläche bietet, der für die nachhaltige Entwicklung von landwirtschaftlichen Systemen entscheidend ist. Daher kann die Nanotechnologie nicht nur die Unsicherheit reduzieren, sondern auch die Managementstrategien der landwirtschaftlichen Produktion als Alternative zu konventionellen Technologien koordinieren. In vielen Fällen bieten Agro-Nanotech-Innovationen kurzfristige Techno-Fixes für die Probleme der modernen industriellen Landwirtschaft. Die vorliegende Übersicht fasst die Anwendungen der Nanotechnologie in der Landwirtschaft zusammen, die die Nachhaltigkeit von Landwirtschaft und Umwelt sicherstellen können.

2. Nano-Farming: Eine neue Grenze in der landwirtschaftlichen Entwicklung

Die Nanopartikeltechnologie ist eine der neuesten technologischen Innovationen, die einzigartige zielgerichtete Eigenschaften mit erhöhter Festigkeit aufweisen. Der Begriff „Nanotechnologie“ wurde erstmals 1974 von Norio Taniguichi, einem Professor an der Tokyo University of Science, geprägt. Obwohl der Begriff „Nanotechnologie“ seit langem in verschiedenen Disziplinen eingeführt wurde, ist die Idee, dass Nanopartikel (NPs) für die landwirtschaftliche Entwicklung von Interesse sein könnten, eine neuere technologische Innovation und befindet sich noch in der fortschreitenden Entwicklung. Jüngste Fortschritte bei der Herstellung von Nanomaterialien unterschiedlicher Größe und Form haben zu einer Vielzahl von Anwendungen in der Medizin, Umweltwissenschaft, Landwirtschaft und Lebensmittelverarbeitung geführt. Im Laufe der Geschichte hat die Landwirtschaft immer von diesen Innovationen profitiert. Da die Landwirtschaft mit zahlreichen und noch nie dagewesenen Herausforderungen konfrontiert ist, wie z. B. reduzierte Ernteerträge aufgrund von biotischen und abiotischen Stressfaktoren, einschließlich Nährstoffmangel und Umweltverschmutzung, hat das Aufkommen der Nanotechnologie vielversprechende Anwendungen für die Präzisionslandwirtschaft geboten. Der Begriff Präzisionslandwirtschaft oder Farming ist in den letzten Jahren aufgetaucht und steht für die Entwicklung der drahtlosen Vernetzung und Miniaturisierung der Sensoren zur Überwachung, Bewertung und Steuerung landwirtschaftlicher Praktiken. Genauer gesagt bezieht er sich auf das standortspezifische Pflanzenmanagement mit einer breiten Palette von Vor- und Nachproduktionsaspekten der Landwirtschaft, die von Gartenbaukulturen bis hin zu Feldfrüchten reichen. Die jüngsten Fortschritte im Tissue Engineering und in der Entwicklung von Nanomaterialien auf der Basis von CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) mRNA und sgRNA für die genetische Modifikation (GM) von Nutzpflanzen sind eine bemerkenswerte wissenschaftliche Leistung. Darüber hinaus bietet die Nanotechnologie hervorragende Lösungen für eine zunehmende Anzahl von Umweltproblemen. So bietet die Entwicklung von Nanosensoren weitreichende Perspektiven für die Beobachtung von Umweltstress und die Steigerung des Bekämpfungspotenzials von Pflanzen gegen Krankheiten. Daher haben solche kontinuierlichen Verbesserungen in der Nanotechnologie mit besonderem Schwerpunkt auf der Identifizierung von Problemen und der Entwicklung von kooperativen Ansätzen für ein nachhaltiges landwirtschaftliches Wachstum ein bemerkenswertes Potenzial, um breite soziale und gerechte Vorteile zu bieten.

3. Quellen und Synthese von grünen Nanopartikeln

Nanopartikel (NPs) sind organische, anorganische oder hybride Materialien mit mindestens einer ihrer Dimensionen im Bereich von 1 bis 100 nm (auf der Nanoskala). NPs, die in der Natur vorkommen, können aus den Prozessen von photochemischen Reaktionen, Vulkanausbrüchen, Waldbränden, einfacher Erosion, Pflanzen und Tieren oder auch von den Mikroorganismen produziert werden. Die Produktion von aus Pflanzen und Mikroorganismen gewonnenen NPs hat sich als eine effiziente biologische Quelle für grüne NPs herausgestellt, die in letzter Zeit aufgrund ihrer umweltfreundlichen Natur und der Einfachheit des Produktionsprozesses im Vergleich zu anderen Wegen die besondere Aufmerksamkeit der Wissenschaftler auf sich zieht. Für die Nutzung der grünen Nanotechnologie werden derzeit eine Reihe von Pflanzenarten und Mikroorganismen, darunter Bakterien, Algen und Pilze, für die NP-Synthese verwendet. Zum Beispiel werden Medicago sativa und Sesbania-Pflanzenarten zur Herstellung von Gold-Nanopartikeln verwendet. Ebenso können anorganische Nanomaterialien aus Silber, Nickel, Kobalt, Zink und Kupfer in lebenden Pflanzen, wie Brassica juncea, Medicago sativa und Heleanthus annus, synthetisiert werden. Mikroorganismen, wie Kieselalgen, Pseudomonas stuzeri, Desulfovibrio desulfuricans NCIMB 8307 Clostridium thermoaceticum und
Klebsiella aerogens werden zur Synthese von Silizium-, Gold-, Zinksulfid- bzw. Cadmiumsulfid-Nanopartikeln verwendet. Obwohl eine große Anzahl von Mikroorganismen zur Synthese von grünen NPs verwendet wird, werden Pilze, hauptsächlich Verticillium sp,
Aspergillus flavus, Aspergillus furnigatus, Phanerochaete chrysoparium und Fusarium oxysporum, als die effizientesten Systeme für die Biosynthese von metall- und metallsulfidhaltigen NPs angesehen.

Alle NPs sind dreidimensionale (3D) Objekte. Eindimensionale (1D) NPs beziehen sich auf die NPs, die 2 Dimensionen auf der Nanoskala und 1 Dimension auf der Makroskala haben (Nanodrähte, Nanoröhren), während zweidimensionale (2D) NPs 1 Dimension auf der Nanoskala und 2 Dimensionen auf der Makroskala haben (Nanoschichten, Nanofilme). 3D-NPs wiederum haben 0 Dimensionen auf der Nanoskala und 3 Dimensionen auf der Makroskala (Nanokugeln, Nano-Blumen), während null-dimensionale (0D) NPs durch alle 3 Dimensionen auf der Nanoskala charakterisiert sind. So wurde eine reiche Vielfalt an physikalischen und chemischen Methoden entwickelt, um die nulldimensionalen NPs mit gut kontrollierten Abmessungen zu synthetisieren oder herzustellen. Nulldimensionale NPs, wie z. B. Quantenpunkte, haben eine breite Akzeptanz und Anwendung in Leuchtdioden, Solarzellen, Einzelelektronentransistoren wie sie in Lasern verwendet werden. Die Synthese von zweidimensionalen NPs, wie z. B. Kreuzungen (kontinuierliche Inseln), verzweigte Strukturen, Nanoprismen, Nanoplatten, Nanoblätter, Nanowände und Nanoplatten sind zu einem wichtigen Bereich in der Nano-Engineering-Forschung geworden. Solche geometrischen Strukturen von NPs haben die Untersuchung und Entwicklung neuer Anwendungen in Sensoren, Photokatalysatoren, Nanocontainern und Nanoreaktoren gesprengt. Im Gegensatz dazu haben dreidimensionale NPs in letzter Zeit aufgrund ihrer großen Oberfläche und anderer überlegener Eigenschaften wie Absorptionsstellen für alle beteiligten Moleküle auf kleinem Raum, die zu einem besseren Transport der Moleküle führen, großes Forschungsinteresse auf sich gezogen. Daher haben die Verbesserung und Entwicklung neuartiger Technologien zur Herstellung von NPs mit ihrem Anwendungspotenzial eine besondere Bedeutung, insbesondere bei der Entwicklung nachhaltiger Agrar- und Umweltsysteme.

4. Verabreichungsoptionen mit Nanopartikeln: Ein neues Fenster für nachhaltige Landwirtschaft

Die Nanotechnologie gilt als eine der Schlüsseltechnologien des einundzwanzigsten Jahrhunderts, die verspricht, traditionelle landwirtschaftliche Praktiken voranzutreiben und eine nachhaltige Entwicklung zu ermöglichen, indem sie die Bewirtschaftungs- und Erhaltungstaktiken bei reduzierter Verschwendung von landwirtschaftlichen Betriebsmitteln verbessert. Die Verabreichungssysteme von Agrochemikalien und organischen Molekülen, einschließlich des Transports von DNA-Molekülen oder Oligonukleotiden in die Pflanzenzellen, sind wichtige Aspekte der nachhaltigen landwirtschaftlichen Produktion sowie der Präzisionslandwirtschaft. Bei herkömmlichen Methoden werden Agrochemikalien in der Regel durch Sprühen und/oder Ausbringen auf die Pflanzen aufgebracht. Infolgedessen erreicht nur eine sehr geringe Anzahl von Agrochemikalien die Zielstellen der Pflanzen, die weit unter der für ein erfolgreiches Pflanzenwachstum erforderlichen minimalen Wirkkonzentration liegt. Die Verluste sind auf die Auswaschung von Chemikalien, den Abbau durch Photolyse, Hydrolyse und auch durch mikrobiellen Abbau zurückzuführen. Bei der Ausbringung von Düngemitteln sollte beispielsweise mehr Wert auf die Bioverfügbarkeit der Nährstoffe gelegt werden, die durch die Chelatbildung im Boden, den Abbau durch Mikroorganismen, Verdunstung, Überdosierung, Hydrolyse und Abflussprobleme verursacht wird. Bei der Anwendung von Pestiziden ist die Wirksamkeitsverbesserung durch das Abdriftmanagement in den Vordergrund zu stellen. Um umweltfreundliche landwirtschaftliche Praktiken zu gewährleisten, hat der jüngste Fortschritt der Nanotechnologie-basierten Synthese von Düngemitteln, Pestiziden und Herbiziden mit langsamer oder kontrollierter Freisetzung daher eine besondere Aufmerksamkeit in der landwirtschaftlichen Produktion erhalten. Im Laufe der Zeit hat sich die Nanotechnologie allmählich von den experimentellen Versuchen im Labor zu praktischen Anwendungen entwickelt. Das Ziel der kontrollierten Verabreichungstechniken ist die dosierte Freisetzung notwendiger und ausreichender Mengen von Agrochemikalien über einen bestimmten Zeitraum und die Erzielung der vollen biologischen Wirksamkeit bei gleichzeitiger Minimierung von Verlusten und schädlichen Wirkungen. Nanopartikel bieten die Vorteile einer effektiven Abgabe von Agrochemikalien aufgrund ihrer großen Oberfläche, der einfachen Anhaftung und des schnellen Stofftransfers. Aus diesen Gründen werden mikronische oder submikronische Partikel durch verschiedene Mechanismen in die Agrochemikalien eingearbeitet, wie z. B. Kapselung, Absorption, oberflächliche Anhaftung von Ionen oder schwachen Bindungen und Einschluss in die Nanomatrix der Wirkstoffe. Beispielsweise verlängert die Kapselung von Kaliumnitrat durch Graphenoxid-Filme den Freisetzungsprozess des Düngers beträchtlich, und eine solche Formulierung scheint bei einer großtechnischen Produktion zu relativ geringen Kosten möglich zu sein. Nanomaterialien verbessern die Stabilität von Agrochemikalien und schützen sie vor Abbau und anschließender Freisetzung in die Umwelt, was letztendlich die Wirksamkeit erhöht und die Mengen an Agrochemikalien reduziert.

Abgesehen von den landwirtschaftlichen Anwendungen bietet die Konvergenz der Nanotechnologie mit der Biotechnologie auch Möglichkeiten als neue Werkzeuge der molekularen Transporter, um Gene zu modifizieren und sogar neue Organismen zu produzieren. Zum Beispiel implizieren Nanobiotechnologien Nanopartikel, Nanokapseln und Nanofasern, um fremde DNA und die Chemikalien zu transportieren, die die Modifikation der Zielgene erleichtern. Bei der Einbringung von genetischem Material stehen virale Gentransportvektoren vor zahlreichen Herausforderungen, wie z. B. begrenzte Wirtsreichweite, begrenzte Größe des eingebrachten genetischen Materials, Transport durch die Zellmembran und auch das Problem des Traffickings des Zellkerns. Im Gegensatz dazu bieten die jüngsten Durchbrüche in der Nanobiotechnologie den Forschern größere Möglichkeiten, das genetische Material einer Spezies vollständig durch eine andere zu ersetzen. In der Gentechnik wurden Siliziumdioxid-Nanopartikel entwickelt, um DNA-Fragmente/-Sequenzen ohne unerwünschte Nebenwirkungen an die Zielspezies, wie Tabak- und Maispflanzen, zu liefern. Darüber hinaus wird das NP-gestützte Transportsystem auch zur Entwicklung insektenresistenter neuartiger Pflanzensorten eingesetzt. So werden beispielsweise DNA-beschichtete NPs als Geschosse in der Gen-Gun-Technologie zum Beschuss von Zellen oder Geweben eingesetzt, um die gewünschten Gene auf die Zielpflanzen zu übertragen. Die jüngsten Fortschritte in der Entwicklung von Chitosan-NPs mit eingeschlossener SiRNA als Trägermedium haben eine neue Möglichkeit der Pflanzenverbesserung eröffnet, die eine zielgerichtete Kontrolle von Schadinsekten ermöglicht, da Chitosan ein effizientes Bindungspotenzial mit RNA sowie eine Penetrationsfähigkeit durch die Zellmembranen besitzt. Zeitgenössische Fortschritte bei der spezifischen Übertragung von CRISPR/Cas9 single guide RNA (sgRNA) auf der Basis von Nanomaterialien haben eine neue Ära in der Gentechnik eingeleitet. Das CRISPR/Cas9-System, bestehend aus CRISPR-Repeat-Spacer-Arrays und Cas-Proteinen, ist ein RNA-gesteuertes Abwehrsystem in Prokaryoten und wurde bereits erfolgreich für das Genome Editing in Pflanzen eingesetzt. Die geringe Transporteffizienz ist jedoch immer noch eine große Hürde, die seine Anwendung behindert. Interessanterweise könnten Nanomaterialien das Ausmaß der Off-Target-Veränderungen minimieren, indem sie die Effizienz und Spezifität der CRISPR/Cas-Systeme verbessern. Zum Beispiel kationische Arginin-Gold-Nanopartikel.

5. Nano-Dünger: Eine effiziente Quelle für eine ausgewogene Ernährung der Pflanzen

Generell ist die Ergänzung der essentiellen Nährstoffe (Elementdüngung) zur Verbesserung der Pflanzenproduktivität und Bodenfruchtbarkeit unumgänglich. Dennoch wird das präzise Düngemittelmanagement als eine der wichtigsten Voraussetzungen für eine nachhaltige landwirtschaftliche Entwicklung angesehen. Nahrung ist jedoch ein grundlegendes Menschenrecht. Die globale Ernährungssicherheit ist weltweit ernsthaft in Frage gestellt. Die Ernährungssicherheit ist unter anderem durch die Begrenzung der verfügbaren natürlichen Ressourcen bedroht. Es wird davon ausgegangen, dass die derzeitige Weltbevölkerung (sieben Milliarden) im Laufe der Zeit zunehmen und bis 2050 etwa neun Milliarden erreichen wird. Um die wachsende Bevölkerung zu ernähren, werden etwa 60-100 % mehr Nahrungsmittel benötigt. Um den erhöhten Nahrungsmittelbedarf zu decken, wird intensive Landwirtschaft betrieben, was letztendlich zu einem Teufelskreis aus Erschöpfung der Bodenfruchtbarkeit und Rückgang der landwirtschaftlichen Erträge führt. Man schätzt, dass ca. 40 % der weltweiten landwirtschaftlichen Flächen ernsthaft degradiert sind, was zu einem starken Verlust der Bodenfruchtbarkeit aufgrund dieser intensiven Anbaumethoden führt. Infolgedessen wird eine riesige Menge an Düngemitteln eingesetzt, um die Bodenfruchtbarkeit und die Produktivität der Pflanzen zu verbessern. Es wurde auch eindeutig festgestellt, dass ein Drittel der Pflanzenproduktivität auf Düngemittel zurückzuführen ist und der Rest von der Effizienz der Nutzung anderer landwirtschaftlicher Betriebsmittel abhängt. Dennoch übersteigt die Nährstoffnutzungseffizienz konventioneller Düngemittel kaum 30-40%. Die Nährstoffnutzungseffizienz konventioneller Düngemittel, z. B. für Stickstoff (N) 30-35 %, Phosphor (P) 18-20 % und Kalium (K) 35-40 %, blieb in den letzten Jahrzehnten konstant. Darüber hinaus hängt die Nährstoffnutzungseffizienz von konventionellen Düngemitteln, die direkt in den Boden eingebracht oder auf die Blätter gesprüht werden, weitgehend von der Endkonzentration der Düngemittel ab, die die Zielorte erreichen. Im wahrsten Sinne des Wortes erreicht eine sehr geringe Menge, die weit unter der gewünschten Mindestkonzentration liegt, den Zielstandort aufgrund von Auswaschungsverlusten von Chemikalien, Abdrift, Abfluss, Hydrolyse, Verdunstung, photolytischem oder sogar mikrobiellem Abbau. Als Folge davon beeinträchtigt die wiederholte Verwendung von zu viel Düngemitteln das inhärente Nährstoffgleichgewicht des Bodens. Außerdem werden die Gewässer durch die Auswaschung von giftigen Stoffen in Flüsse und Wasserreservoirs stark verschmutzt, was auch die Verunreinigung des Trinkwassers zur Folge hat. Es wurde berichtet, dass Anfang 1970 nur 27 kg NPK ha-1 benötigt wurden, um eine Tonne Getreide zu produzieren, während es im Jahr 2008 auf 109 kg NPK ha-1 gestiegen ist, um das gleiche Produktionsniveau zu erreichen. Nach Angaben der International Fertilizer Industry Association (IFIA) ist der weltweite Düngemittelverbrauch stark angestiegen, und es wurde prognostiziert, dass der weltweite Bedarf bis zum Jahr 2016-2017 192,8 Mio. t erreichen wird. Von diesen großen Mengen an konventionellen Düngemitteln verbleibt ein großer Teil der Chemikalien im Boden oder kann in die anderen Umweltkompartimente gelangen, was zu einer starken Umweltverschmutzung führt, die das normale Wachstum von Flora und Fauna beeinträchtigen kann.
Die Verwendung von technisch hergestellten Nanomaterialien im Rahmen einer nachhaltigen Landwirtschaft hat einen völlig neuen Weg der Nahrungsmittelproduktion aufgezeigt, der möglicherweise die Unsicherheiten im Pflanzenbau mit begrenzten verfügbaren Ressourcen überwinden könnte. Die Revolution der grünen Nanotechnologie hat die globale Landwirtschaft dramatisch verändert und Nanomaterialien als Nanodünger haben das Versprechen geweckt, die Projektion des globalen Nahrungsmittelbedarfs und auch die nachhaltige Landwirtschaft zu erfüllen. Um den Makro- und Mikronährstoffmangel durch eine verbesserte Effizienz der Nährstoffnutzung zu lindern und das chronische Problem der Eutrophierung zu überwinden, können Nanodünger eine beste Alternative sein. Nanodünger, die gezielt synthetisiert werden, um die Freisetzung von Nährstoffen in Abhängigkeit vom Bedarf der Pflanzen zu regulieren und gleichzeitig Differenzverluste zu minimieren, haben ein immenses Potenzial. Konventionelle Stickstoffdünger zum Beispiel zeichnen sich durch enorme Verluste aus dem Boden durch Auswaschung, Verdunstung oder sogar den Abbau von bis zu 50-70% aus, was letztlich die Effizienz der Düngemittel reduziert und die Produktionskosten erhöht. Auf der anderen Seite synchronisieren Nanoformulierungen von stickstoffhaltigen Düngemitteln die Freisetzung von Dünger-N mit dem Aufnahmebedarf durch die Pflanzen. Dementsprechend verhindern Nanoformulierungen unerwünschte Nährstoffverluste durch direkte Internalisierung durch die Pflanzen und vermeiden dadurch die Wechselwirkung der Nährstoffe mit Boden, Wasser, Luft und Mikroorganismen. So reduziert der Einsatz von porösen Nanomaterialien wie Zeolithen, Ton oder Chitosan die Stickstoffverluste deutlich, indem die bedarfsgerechte Freisetzung reguliert und die Pflanzenaufnahme verbessert wird. Ammoniumgeladene Zeolithe haben das Potenzial, die Löslichkeit von Phosphatmineralien zu erhöhen und damit eine verbesserte Phosphorverfügbarkeit und -aufnahme durch Nutzpflanzen aufzuweisen. Graphenoxid-Filme, ein Nanomaterial auf Kohlenstoffbasis, können den Prozess der Kaliumnitratfreisetzung verlängern, was die Funktionsdauer verlängert und Verluste durch Auswaschung minimiert. Außerdem zeigten sie, dass Nanomaterialien in der Pflanzenproduktion ein größeres Potenzial haben als herkömmliche Düngemittel. Sie zeigten, dass die Anwendung von Nanocalcit (CaCO3-40%) mit Nano-SiO2 (4%), MgO (1%) und Fe2O3 (1%) nicht nur die Aufnahme von Ca, Mg und Fe verbesserte, sondern auch die Aufnahme von P mit den Mikronährstoffen Zn und Mn deutlich erhöhte. Es gibt viele verschiedene Formen von Nanodüngern. Basierend auf ihren Wirkungen können Nanodünger als Kontroll- oder Langzeitdünger, Kontrollverlustdünger, Magnetdünger oder Nanokompositdünger als kombinierte Nanovorrichtung klassifiziert werden, um eine breite Palette von Makro- und Mikronährstoffen in wünschenswerten Eigenschaften zu liefern. Nanodünger werden hauptsächlich durch die Verkapselung von Nährstoffen mit Nanomaterialien hergestellt. Die anfänglichen Nanomaterialien werden sowohl mit physikalischen (top-down) als auch mit chemischen (bottom-up) Ansätzen hergestellt, danach werden die gewünschten Nährstoffe in nanoporösen Materialien eingekapselt oder mit einem dünnen Polymerfilm beschichtet oder als Partikel oder Emulsionen in Nanogröße geliefert, wie es für kationische Nährstoffe (NH4+, K+, Ca2+, Mg2+) oder nach Oberflächenmodifikation für anionische Nährstoffe (NO3-, PO4-, SO4-) der Fall ist.

Die landwirtschaftliche Produktion kann durch ein ausgewogenes Düngemittelmanagement, Bewässerung und die Verwendung von Qualitätssaatgut um 35-40 % gesteigert werden. Es wurde eifrig beobachtet, dass die Anwendung von nanoformulierten Düngemitteln ein erhebliches Potenzial zur Steigerung der Pflanzenproduktivität hat. Zum Beispiel kann die Verwendung von Kohlenstoff-Nanopartikeln zusammen mit Dünger die Kornerträge von Reis (10,29 %), Frühjahrsmais (10,93 %), Sojabohnen (16,74 %), Winterweizen (28,81 %) und Gemüse (12,34-19,76 %) erhöhen. Es wurde gezeigt, dass die Anwendung von Chitosan-NPK-Dünger den Ernte-Index, Ernte-Index und Mobilisierungs-Index der ermittelten Weizen-Ertragsvariablen im Vergleich zu den Kontroll-Ertragsvariablen signifikant erhöht. Nanomaterialien stimulieren eine Reihe von lebenswichtigen Facetten der Pflanzenbiologie, da die Wurzel- und Blattoberflächen der Pflanzen die Hauptnährstoffschleusen der Pflanzen sind, die im Nanomaßstab hochporös sind. Folglich kann die Anwendung von Nanodünger die Nährstoffaufnahme von Pflanzen durch diese Poren verbessern oder der Prozess kann die Komplexierung mit molekularen Transportern oder Wurzelexsudaten durch die Schaffung neuer Poren oder durch die Ausnutzung von Endozytose oder Ionenkanälen erleichtern. Darüber hinaus wurde in einer Vielzahl von Untersuchungen eindeutig festgestellt, dass die Verkleinerung von Nanomaterialien die Erhöhung des Oberflächenmassenverhältnisses der Partikel ermöglicht, was zur Folge hat, dass eine große Menge an Nährstoffionen langsam und kontinuierlich über einen längeren Zeitraum adsorbiert und desorbiert wird. Auf diese Weise gewährleisten die Nanoformulierungen von Düngemitteln eine ausgewogene Ernährung der Pflanzen während des gesamten Wachstumszyklus, was letztendlich die landwirtschaftliche Produktion verbessert. Es ist anzumerken, dass die erhöhte Effizienz eines Produktes die Landwirte dazu anregen kann, das Produkt gewinnbringender einzusetzen.

Als vielversprechendes interdisziplinäres Forschungsgebiet hat die Nanotechnologie in der Landwirtschaft ihre enorme Bedeutung erlangt. Neben den Makronährstoffen spielen auch Mikronährstoffe wie Mangan, Bor, Kupfer, Eisen, Chlor, Molybdän, Zink eine wesentliche Rolle bei der stetigen Steigerung der Pflanzenproduktivität. Zahlreiche Faktoren, wie z. B. der pH-Wert des Bodens (Alkalität oder saurer Zustand), begünstigen jedoch bei extensiver landwirtschaftlicher Praxis deren Mangel in der Pflanzenproduktion. Der Mangel an Mikronährstoffen vermindert nicht nur die Produktivität von Nutzpflanzen, sondern beeinträchtigt auch die menschliche Gesundheit durch den Verzehr von Lebensmitteln mit Mikronährstoffmangel. Eisenmangel beispielsweise verursacht Anämie, Wachstumsstörungen, Probleme mit der reproduktiven Gesundheit und sogar eine verminderte kognitive und körperliche Leistungsfähigkeit beim Menschen. Im Gegensatz dazu würde die Supplementierung von nanoformulierten oder in Nanoform eingeschlossenen Mikronährstoffen zur langsamen oder kontrollierten Freisetzung von Nährstoffen den Aufnahmeprozess durch Pflanzen stimulieren, das Wachstum und die Produktivität von Nutzpflanzen fördern und auch zur Erhaltung der Bodengesundheit beitragen. Zum Beispiel beeinflusst die Anwendung von Nano-Zinkoxid in niedrigen Dosen in zinkarmen Böden das Wachstum und die physiologischen Reaktionen, wie die Spross- und Wurzelverlängerung, das frische Trockengewicht und die Photosynthese bei vielen Pflanzenarten im Vergleich zur Kontrolle positiv. Es wurde auch gezeigt, dass die Anwendung von Zinkoxid-Nanopartikeln mit anderen Düngemitteln in zinkarmen Böden nicht nur die Nährstoffausnutzung fördert, sondern auch die Produktivität von Gerste um 91 % im Vergleich zur Kontrolle erhöht, während traditionelles ZnSO4 in großen Mengen die Produktivität um 31 % im Vergleich zur Kontrolle erhöht.

Wissenschaftliche Innovationen sind auf die Verbesserung des menschlichen Wohlergehens ausgerichtet. Ebenso zielen Pflanzenwissenschaftler darauf ab, die natürliche genomische Vielfalt verschiedener domestizierter Nutzpflanzen wiederherzustellen und Technologien zur Verringerung des Düngerverbrauchs zu verbessern, ohne die Produktivität der Pflanzen und eine nachhaltige Umwelt zu beeinträchtigen. Im Zuge dessen wird in der nachhaltigen Landwirtschaft ein neuer Begriff, „Kontrollverlustdünger“, verwendet. Diese Art von Düngemitteln wurde entwickelt, um die punktuelle Verschmutzung durch Inputs in der Landwirtschaft zu reduzieren, die durch die Bildung eines Nanonetzwerks durch Selbstorganisation bei Kontakt mit Wasser im Boden funktionieren. Die eingeschlossenen Nährstoffe des Düngers gelangen über Wasserstoffbrücken, Oberflächenspannung, molekulare Kraft oder viskose Kraft in das Bodennetzwerk. Infolgedessen vergrößert sich ihre räumliche Skala, so dass sie leicht durch die Bodenfiltration blockiert werden und im Boden um die Pflanzenwurzeln herum fixiert bleiben, was die Nährstoffaufnahme durch die Pflanzen erleichtert, um die Anforderungen während des Wachstumszyklus zu erfüllen. Ein solcher neuartiger Ansatz wurde zum Beispiel erfolgreich eingesetzt, um die Transferrate von Stickstoff in die Umwelt zu reduzieren. Es wurde auch gezeigt, dass die Anwendung von Düngemitteln mit Kontrollverlust nicht nur den Stickstoffabfluss und den Auswaschungsverlust um 21,6 % und 24,5 % verringert, sondern auch einen Anstieg des mineralischen Reststickstoffs im Boden um 9,8 % zusammen mit einer um 5,5 % gesteigerten Weizenproduktion im Vergleich zu herkömmlichen Düngemitteln bewirkt. Obwohl eine Reihe von Forschungsarbeiten zu diesem Thema veröffentlicht wurden, sind die Informationen und Forschungen über das breitere Potenzial noch unzureichend. Daher sollten weitere Forschungsarbeiten durchgeführt werden, um neue und vielversprechende Ansätze zu erforschen, die die Migration anderer Makro- und Mikronährstoffe als Schadstoffe im Mikrobereich in die Umweltmatrix kontrollieren können.