Schlagwort-Archive: Krebsforschung

Nanoforschung – Mit Nanopartikeln gegen Krebs

LMU-Wissenschaftler haben Nanopartikel entwickelt, die gezielt Krebszellen abtöten. Dies könnte der Tumorbekämpfung neue therapeutische Optionen eröffnen.

Chemotherapien gegen Krebs haben häufig schwere Nebenwirkungen, da die verabreichten Medikamente auch für gesunde Zellen toxisch sind. Calciumphosphat und Citrat werden bereits seit einiger Zeit als vielversprechende Alternativen diskutiert, da sie zwar zum Zelltod führen, wenn sie in hohen Konzentrationen ins Zellinnere gelangen, ansonsten aber für den Körper gut verträglich sind. Allerdings fehlten bisher Möglichkeiten, diese Stoffe an den strengen Kontrollmechanismen der Zellen vorbei ins Zellinnere zu schleusen. Jetzt haben Wissenschaftler um Dr. Constantin von Schirnding, Dr. Hanna Engelke und Prof. Thomas Bein vom Department Chemie der LMU neuartige amorphe Nanopartikel entwickelt, die aus genau jenen gewünschten Stoffen bestehen. Die Partikel können die Hindernisse nun überwinden und gezielt Krebszellen abtöten.

Calciumphosphat und Citrat sind an der Regulation vieler zellulärer Signalwege beteiligt. Um toxische Dosen im Zellinneren zu vermeiden, kontrollieren Zellen die Aufnahme dieser Stoffe streng. Die von den Wissenschaftlern entwickelten Nanoteilchen umgehen diese Kontrolle: „Wir haben amorphe, poröse Nanopartikel aus Calciumphosphat und Citrat hergestellt, die von einer Lipidschicht umgeben sind“, sagt von Schirnding. Durch die Beschichtung können die Teilchen in die Zelle eindringen, ohne dass deren Warnmechanismen anschlagen. Dort lösen sie sich sehr effizient auf und setzen große Mengen Calcium und Citrat frei.

Zellversuche zeigten, dass die Partikel in der Lage sind, Krebszellen selektiv abzutöten – gesunde Zellen dagegen überleben, obwohl sie die Partikel ebenfalls aufnehmen. „Offensichtlich können die Teilchen sehr toxisch sein, wenn sie es mit Krebszellen zu tun bekommen. Und je aggressiver der Tumor war, desto besser wirkten die Teilchen“, sagt Engelke.

Bei der Aufnahme in die Zellen werden die Nanoteilchen von einer zusätzlichen Membran überzogen. Die Wissenschaftler vermuten, dass es in den Krebszellen einen noch unbekannten Mechanismus gibt, der die zusätzliche Membran löchrig macht, sodass die Bestandteile der Partikel in das Zellinnere eindringen können. In den gesunden Zellen dagegen bleibt die Membran intakt und die Nanokügelchen werden als Ganzes wieder ausgeschieden.

„Die hochselektive Toxizität der Partikel ermöglichte es uns, zwei verschiedene aggressive pleurale Tumore bei Mäusen erfolgreich zu behandeln und ihre Größe nach nur zwei lokalen Anwendungen um etwa 40 bzw. 70 Prozent zu reduzieren“, sagt Engelke. Pleurale Tumore sind häufig Metastasen von Lungentumoren, die im sogenannten pleuralen Spalt zwischen Lunge und Brust angesiedelt sind. Übliche Chemotherapeutika haben hier keinen Zugang, weil der pleurale Raum nicht mit Blut versorgt wird. „Unsere Partikel dagegen können direkt in den pleuralen Spalt eingebracht werden“, sagt Bein. Dabei zeigten sich im Verlauf von zwei Monaten keine Anzeichen von gravierenden Nebenwirkungen. Die Forscher sind daher überzeugt, dass die neuen Nanopartikel großes Potenzial für die Entwicklung neuer Therapien gegen Krebs haben.

Nanohybride in der Medizin

Die Heilung von Krebs ist nach wie vor eine der großen Herausforderungen der Medizin. Viel wurde schon erreicht. Dennoch müssen die derzeit verwendeten Methoden weiter verbessert werden. Nanotechnologie verspricht einen wesentlichen Beitrag dafür.

Autorin Dr. rer. nat.Patricia Lefèvre

Bösartige Tumore müssen entfernt werden, um ein weiteres Ausbreiten der Krebszellen zu verhindern. Hier greifen Doxorubicin die Tumorzellen an und zerstören sie gezielt. Die heute Medizin kennt dafür verschiedene Verfahren, die jedoch alle mit starken Nebenwirkungen durch die Chemotherapie verbunden sind. Eine gezielte Bestrahlung der Tumore mit radioaktiver Strahlung, Röntgenstrahlen oder Mikrowellen zerstört zwar die Krebszellen, alerdings lässt sich die Bestrahlung nicht so zielgenau einsetzen. So wird schließlich auch gesundes Gewebe zerstört. Das molekulare Drug-Targeting ist zwar vielversprechend, leidet aber unter den hohen Kosten, der Aktivierung des Immunsystems und der
reduzierte Verweildauer im Blut noch nicht das non plus ultra.

In Laboratorien auf der ganzen Welt wird seit über 25 Jahren auf diesem Gebiet geforscht und es kommen immer mehr neue „Bausteine“ hinzu.
Die Nanotechnologie mit ihren sogenannte Magnetflüssigkeits-Hyperthermie (Eisenoxid-Nanopartikeln, auch IONPs genannt), stehen kurz vor der weltweiten Zulassung in der Krebstherapie.
Die IONPs werden durch Injektionen in den Körper gespritzt und durch die spezielle biochemische Oberfläche dieser Partikel betrachten die gefräßigen Krebszellen sie als Nährstoff. Hat sich die gesamte Krebsgeschwulst schließlich mit Nanopartikeln „vollgefressen“, schalten die Mediziner ein neu entwickeltes Magnetfeldtherapie-System ein.
Das für den Menschen ungefährliche Magnetwechselfeld erwärmt die Nanopartikel, nicht aber das gesunde Gewebe. Die Krebszellen bekommen dadurch hohes Fieber und sterben ab. Für ihre Beseitigung sorgt dann der menschliche Körper selbst. Die Nanopartikel werden ausgeschieden und über den normalen Stoffwechsel abgebaut.

Krebs wird auch durch Chemotherapie bekämpft. Dabei werden Stoffe verwendet, die ihre Wirkung möglichst gezielt auf Krebszellen ausüben und diese abtöten oder in ihrem Wachstum hemmen. Aber auch normale Körperzellen können – wenn auch weniger stark – von der Chemotherapie geschädigt werden.

Die Nanotechnologie könnte langfristig dafür sorgen, dass Medikamente direkt und ausschließlich an erkrankte Zellen abgegeben werden. Solche Medikamentenfähren unterscheiden chemisch die Oberflächen erkrankter Zellen von denen gesunder. Sie docken dann am kranken Gewebe an und geben den Wirkstoff direkt an die einzelne Zelle ab.

Nanotechnologie verspricht aber nicht nur für die Krebstherapie große Fortschritte. Auch bei der Implantation von Zähnen oder erkrankten Gelenken, beispielsweise von Hüftgelenken, helfen die winzig kleinen Partikel.

Das Einsetzen künstlicher Zähne in den Kiefer ist ein großer Fortschritt gegenüber den in der Vergangenheit unvermeidlichen Zahnprothesen. Allerdings kommt es noch immer häufig zu Abstoßungsreaktionen, die das Einwachsen des Implantats verhindern. Es kann zu Entzündungen und Komplikationen kommen. Zähne sind beim Kauen besonderen Belastungen ausgesetzt und müssen daher sehr fest einwachsen.

Auch hier kommt die Nanotechnologie ins Spiel. Studien deuten darauf hin, dass bioaktive Moleküle einer nanotechnologisch hergestellten Oberfläche des Implantats eine sanfte Einbettung. Die extrem dünne knochenähnliche Beschichtung enthält Substanzen, die Knochenzellen an sich binden und dadurch verbinden sich die Implantate schneller mit dem Kieferknochen und wachsen so fester und dauerhafter ein.

Dies sind nur wenige Beispiele für die ungeahnten Möglichkeiten, die die Nanotechnologie für die Gesundheit eröffnen wird. Große Erwartungen bestehen beispielsweise auch für neue diagnostische Verfahren durch Nanopartikel, die sich gezielt an bestimmten Organe oder Zellen anlagern.

Dr rer. nat. Patricia Lefèvre, Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon, 16. Juni 2021