Schlagwort-Archive: Sars-CoV-2

„Houston, we’ve had a problem.“

„Houston, we’ve had a problem.“

Dies waren die Worte eines der wohl bekanntesten Funksprüche, die der Astronaut und Kommandant der Apollo 13 Mission, John „Jack“ Swigert, am 13. April 1970 an das Mission Control Center der NASA funkte.

Damals waren des drei Astronauten in Weltall, heute haben 7,7 Milliarden Menschen ein Problem mit einem mikroskopisch kleinen Virus.

Autorin Dr.rer.nat. Patricia Lefèvre

Um nun den „Fach-Virologen“ eine kleine Einordnung in die Arbeit der Forscher_innen zu geben, erklärte ich der YouTube- und Facebook-Fachwelt, wie sich die genomische Überwachung zusammensetzt.

Jenes Netzwerk, welches für die genomische Überwachung in Südafrika zuständig ist, arbeitet mit vielen Universitäten zusammen.

Das Network for Genomics Surveillance in South Africa, dem das Nationale Institut für übertragbare Krankheiten (NICD), das KRISP an der Universität von KwaZulu-Natal (UKZN), die Universität Kapstadt (UCT), die Universität Stellenbosch (SUN), die Universität des Freien Staates (UFS), die Universität Pretoria, die Universität Witwatersrand (WITS) und der Nationale Gesundheitslaboratoriumsdienst (NHLS) angehören, überwachen seit März 2020 Veränderungen bei SARS-CoV-2. Also jenem Virus welches COVID-19 verursacht.
(Anm.: in einem  Beitrag vom 30. Juni 2021 bin ich auf die Linien der Virus Veränderungen schon eingegangen.)

Was ist die B.1.1.529-Linie?

Am 22. November 2021 haben Forscher in Südafrika eine Gruppe verwandter SARS-CoV-2-Viren mit der Bezeichnung B.1.1.529 entdeckt. Die Virus-Variante B.1.1.529 wurde in der Provinz Gauteng, besser ist Pretoria bekannt, relativ häufig nachgewiesen, wobei >70 % der sequenzierten Genome von Proben, die zwischen dem 14. und 23. November 2021 gesammelt wurden, zu dieser Linie gehören. Diese Linie weist eine große Anzahl von Mutationen auf, die bereits in anderen SARS-CoV-2- variant of interest 
( zu deutsch: VOI =Varianten von Interesse) oder variant of concern (VOC), also: besorgniserregenden Varianten, beobachtet wurden.
Auch wurde an der Universität Pretoria eine andere- und somit neuartige Mutationen in genomische Überwachung von Sequenzen gefunden.
Eine dieser Veränderungen kann durch Standarddiagnosetests, die auf das S-Gen abzielen, nachgewiesen werden, so dass diese Linie in Südafrika ohne Sequenzierungsdaten nachgewiesen werden kann.

Die WHO und das südafrikanische Gesundheitsministerium wurden Anfang dieser Woche auf diese neue Linie ( Mutation des SARS-CoV-2 Stamm) aufmerksam gemacht. Die NGS-SA überwacht weiterhin die Häufigkeit dieser Linie, und Labortests zur Bewertung der funktionellen Auswirkungen dieser Mutationen laufen unter hochdruck.

Bis zum 27. November 2021 erfüllt die neu montierte B.1.1.529 Linie noch nicht die WHO-Kriterien für VOC oder VOI.
Also: bis jetzt ist noch nicht klar, wie sich diese notierte SARS-CoV-2 Linie auf den menschlichen Organismus auswirken.
Wie schnell sich die neue Variante ausbreitet und die genomische Veränderung eintritt, muss zum jetzigen Zeitpunkt untersucht werden. Dafür braucht es nun Daten, die bei neuinfektionen gesammelt werden.

Wie unterscheiden sich die Varianten C.1.2, Beta oder Delta von der Linie B.1.1.529?

Die B.1.1.529-Linie weist zwar einige gemeinsame Mutationen mit den C.1.2-, Beta- und Delta-Varianten auf, hat aber auch eine Reihe zusätzlicher Mutationen. Gegenwärtig unterscheidet sich die B.1.1.529-Linie relativ deutlich von den C.1.2-, Beta- und Delta-Varianten und weist einen anderen Evolutionspfad auf. Zur Zeit gibt keine Erkenntnisse über ungewöhnlichen Symptome, als nach einer Infektion mit der Variante B.1.1.529. Gesichert ist nur, dass es wie bei anderen Varianten zu sehr asymptomatischen Verläufte der Krankheit kommt. Auch sind die bisherigen Impfstoffe für die bekannten Virus-Variante bei der neusten Sars-CoV-2 Variante noch nicht geprüft.

Wie alle Viren verändert sich auch SARS-CoV-2 mit der Zeit, wobei Mutationen, die dem Virus einen Vorteil verschaffen, bei neueren Infektionen bevorzugt werden. Zwar sind einige der Mutationen in der B.1.1.529-Linie auch in anderen SARS-CoV-2-Varianten aufgetreten, die Anlass zur Sorge geben. Es ist wahrscheinlich, dass Impfstoffe immer noch ein hohes Maß an Schutz vor Krankenhausaufenthalten und Tod bieten werden. Es wird bereits geforscht, wie sich das Immun-Escape-Potenzial von B.1.1.529 im Labor verhält. Genaue Daten und Prognosen kann zur Zeit niemand geben. Solange es aber keine verlässlichen Daten gibt, sollte man weiterhin vorsichtig sein und sich an die Regeln zur Eindämmung der Pandemie halten.

Bis jetzt gehen Forscher_innen davon aus, dass überall dort, wo sich das Virus ausbreitet, weiterhin neue Varianten auftauchen werden. Die Impfung ist nach wie vor von entscheidender Bedeutung, um diejenigen in der Gemeinschaft zu schützen, die einem hohen Risiko von Krankenhausaufenthalten und Todesfällen ausgesetzt sind, um die Belastung des Gesundheitssystems zu verringern und um vor allem die Übertragung zu verlangsamen.

.
Dr. rer.nat. Patricia Lefèvre
Laboratoire Interdisciplinaire Carnot de
Bourgogne, Dijon, 27. November 2021

Corona und die Folgen

Cartoon-Darstellung des SARS-CoV-2 3CLpro-Homodimers. Kette-A (Protomer-A) ist in
mehrfarbig und Kette-B (Protomer-B) ist dunkelblau dargestellt. Der N-Finger, der bei der Dimerisierung eine wichtige Rolle spielt und die aktive Konformation aufrechterhält, ist in heißem Pink dargestellt, Domäne I
ist cyanfarben, Domäne II ist grün und Domäne III ist gelb gefärbt. Die N- und C-Termini sind markiert. Die Reste der katalytischen Dyade (Cys-145 und His-41) sind
gelb hervorgehoben und beschriftet.

Zurück zum Anfang

Wir sind mittlerweile im zweiten Jahr eine Pandemie, welche es in dieser Form in der Geschichte der Menschheit noch nie gegeben hat.

Autorin Dr.rer. nat. Patricia Lefèvre

Ende 2019 wurde ein neuartiger Coronavirus-Stamm gemeldet, der mit tödlichen Atemwegserkrankungen in Verbindung gebracht wurde. Das Zentrum für Krankheitskontrolle und -prävention (CDC), die chinesischen Gesundheitsbehörden und Forscher ergriffen rasche Maßnahmen. Die Weltgesundheitsorganisation (WHO) gab diesem Erreger vorläufig den Namen 2019 novel coronavirus (2019-nCoV).

Bereit am 10. Januar 2020 wurde die erste Ganzgenomsequenz von 2019-nCoV veröffentlicht, die es den Forschern_innen ermöglichte, das Virus bei Patienten mithilfe von Methoden der reversen Transkriptions-Polymerase-Kettenreaktion (RT-PCR) schnell zu identifizieren.

Schon am 21. Januar wurde der erste Artikel über 2019-nCoV veröffentlicht, aus welchem hervorging, dass 2019-nCoV zur Gruppe der Beta-Coronaviren gehört und mit dem Fledermaus-Coronavirus HKU9-1 verwandt ist, ähnlich wie die SARS-Coronaviren, und dass sein Spike-Protein trotz Sequenzvielfalt stark mit dem menschlichen ACE2-Rezeptor interagiert.

Am 30. Januar rief die WHO den internationalen Gesundheitsnotstand (Public Health Emergency of International Concern, PHEIC) für den Ausbruch von nCoV 2019 aus. Später wurde die Mensch-zu-Mensch-Übertragung bestätigt.

Bis zum 31. Januar waren 51 Ganzgenomsequenzen von 2019-nCoV aus verschiedenen Labors und Regionen an die GISAID-Datenbank übermittelt worden.

Am 12. Februar benannte die WHO den 2019-nCoV-Erreger endgültig als SARS-CoV-2 und die verursachende Krankheit als Coronavirus-Krankheit 2019 (COVID-2019).

Trotz des raschen Handelns von Forscher_innen auf der ganze Welt, konnte eine Ausbreitung nicht gestoppt werden. Die ersten Fehler von Staaten und Regierungen wurden gemacht und ab da an gab es kein Halten mehr.

Am 11. März erkannte die WHO COVID-19 formell als Pandemie an.
Bis zum 19. März 2020 stieg die Zahl der Todesopfer weltweit auf 9.913, mit 2.42.650 im Labor bestätigten Fällen.
Die Sterblichkeitsraten unter den Infizierten war von Land zu Land unterschiedlich.

Nun fast zwei Jahre nach dem Ausbruch von SARS-COV-2 sind 5.076.863 Todesfälle registriert.
Man kann nun streiten ob jene Todesfälle mit, an, durch oder wegen Sars-CoV-2 gestorben sind. Fakt ist: diese Menschen sind tot!

Im Frühjahr 2020 liefen weltweit erste Schutzmaßnahmen in fast allen Ländern der Welt an. Diese Maßnahmen veranlassten die ersten Menschen gegen jene Maßnahmen und Regierungen zu demonstrieren.
Der Höhenflug der selbst ernannten Querdenker begann im Frühsommer 2020 und plötzlich wurde Unwahrheit, Halbwahrheiten oder völliger Irrsinn via Internet verbreitet. Folglich kam die zweite Welle der Pandemie.

Phylogenetischer Baum, abgeleitet aus den engsten Homologen von SARS-CoV-2 3CLpro. Zur Erstellung dieses Baums wurde die Maximum-Likelihood-Methode verwendet.

Virologe ist heute jeder

Durch die immer mehr Falschmeldung und wüstesten Verschwörungstheorien liefen viele Menschen anderen hinterher, die eben jene Falschmeldung in der Welt verbreiteten.
Nun stelle ich all diesen „Fach-Virologen“ jenes SARS-Virus mit wissenschaftlich einfachen Worten vor.

Coronaviren sind einzelsträngige RNA-Viren mit positivem Sinn, die ein großes virales RNA-Genom besitzen – deren Erbmaterial aus RNA besteht. Der Begriff RNA-Viren ist keine taxonomische Sammelbezeichnung und enthält keine verwandtschaftlichen Bezüge. Eine genaue Klassifikation der RNA-Viren wird in den Baltimore-Gruppen 3, 4 und 5 und der Taxonomie der Viren vorgenommen.
Die nachfolgenden Repräsentative Arten sind selbstverständlich jedem Virologe bekannt. Da wären zum Beispiel: Hepatitis-C-Virus, Humanes Respiratorisches Synzytial-Virus und das Influenza-A-Virus zu nennen.

Da die Forschung in Studien gezeigt haben, dass SARS-CoV-2 eine ähnliche genomische Organisation wie andere Beta-Coronaviren aufweist, bestehend aus einer 5′-untranslatierten Region (UTR), einem Replikasekomplex (orf1ab), der für nicht-strukturelle Proteine (nsps) kodiert, ein Spike-Protein (S)-Gen, ein Hüllprotein (E)-Gen, ein Membranprotein (M)-Gen, ein Nukleokapsidprotein (N)-Gen, eine 3′-UTR und mehrere nicht identifizierte nicht-strukturelle offene Leserahmen.

Mehrfache Sequenz
Alignment der engsten Homologe von SARS-CoV-2 3CLpro mit 70 % Sequenzidentität.

Obwohl SARS-CoV-2 zu der Gruppe der Beta-Coronaviren eingeordnet wird, unterscheidet sich dieses Virus von MERS-CoV und SARS-CoV.

Die jüngste Studien haben gezeigt, dass die Gene von SARS-CoV-2 eine Nukleotididentität von <80 % und eine Nukleotidähnlichkeit von 89,10 % mit den Genen von SARS-CoV aufweisen. Normalerweise produzieren Beta-Coronaviren bei der Transkription des Genoms ein ∼800 kDa Polypeptid. Dieses Polypeptid wird proteolytisch gespalten, um dadurch verschiedene Proteine zu erzeugen. Die proteolytische Verarbeitung wird durch Papain-ähnliche Protease (PLpro) und 3-Chymotrypsin-ähnliche Protease (3CLpro) vermittelt. Da jenes 3CLpro Polyprotein an 11 verschiedenen Stellen spaltet, um verschiedene nicht-strukturelle Proteine zu erzeugen, die für deren virale Replikation wichtig sind.

Ist also das gleiche Prinzip wie ein Brot mit Marmelade und eines mit Schinken. Nur das bei dem Schinken noch die Variable Tomate oder Gurke Erwähnung finden kann.

Jenes 3CLpro spielt eine entscheidende Rolle bei der Replikation von Viruspartikeln und befindet sich im Gegensatz zu Struktur-/Accessory-Protein-kodierenden Genen am 3′-Ende, das eine übermäßige Variabilität aufweist – siehe Schinkenbrot.
Daher ist es ein potenzielles Ziel für das Screening von Hemmstoffen gegen Coronaviren.

Strukturbasierte Aktivitätsanalysen und Hochdurchsatzstudien haben potenzielle Hemmstoffe für SARS-CoV und MERS-CoV 3CLpro identifiziert. Heilpflanzen, insbesondere solche, die in der traditionellen chinesischen Medizin verwendet werden, haben große Aufmerksamkeit auf sich gezogen, da sie bioaktive Verbindungen enthalten, die zur Entwicklung formaler Medikamente gegen verschiedene Krankheiten ohne oder mit nur minimalen Nebenwirkungen verwendet werden könnten.

Soweit die Einordnung zwischen SARS-CoV und MERS-CoV.

Da wir nun alle die Einstimmung in die Thematik verstanden haben, möchte ich noch kurz auf den Verlauf von Sars-CoV-2 eingehen.

Die Grundlage über die viele Arten von Coronaviren ist mittlerweile jedem bekannt und so können wir auch gleich mit den Folgen einer Infizierung beginnen.

Das SARS-CoV-2 Virus infiziert den menschlichen Körper, indem es in gesunde Zellen eindringt. Dort erstellt der Eindringling Kopien von sich selbst und vermehrt sich im ganzen Körper.

Das Sars-CoV-2  Virus heftet sich mit seinen stacheligen Oberflächenproteinen – ähnlich eines uns allen bekannten Klettverschluss, an Rezeptoren auf gesunden Zellen, dies insbesondere sehr gerne und schnell in der Lunge fest.

Nun dringen immer mehr virale Proteine über die ACE2-Rezeptoren in die Zellen ein. Dort angekommen, entführt das Coronavirus gesunde Zellen und übernimmt das Kommando. Schließlich tötet es einige der gesunden Zellen ab.

Die ersten Symptome einer Erkrankung

Die durch das Coronavirus verursachte Krankheit, beginnt mit Tröpfchen aus dem Husten, Niesen oder Atem einer infizierten Person. Sie können sich in der Luft oder auf einer Oberfläche befinden, die Sie berühren, bevor Sie Ihre Augen, Ihre Nase oder Ihren Mund berühren. So kann das Virus in die Schleimhäute Ihres Rachens eindringen. Innerhalb von 2 bis 14 Tagen kann Ihr Immunsystem mit folgenden Symptomen reagieren:

– Fieber
– Husten
– Kurzatmigkeit oder Atembeschwerden
– Müdigkeit
– Schüttelfrost, manchmal mit Zittern
– Körperliche Schmerzen
– Kopfschmerzen
– Halsschmerzen
– Verstopfung oder eine laufende Nase
– Verlust des Geschmacks
– Verlust des Geruchsinns
– Übelkeit oder Erbrechen
– Diarrhöe

Wie bewegt sich das Coronavirus durch den Körper?

Das Virus wandert durch Ihre Atemwege: also Mund, Nase, Rachen und Lunge.
Die unteren Atemwege haben mehr ACE2-Rezeptoren als der Rest der Atemwege. Daher ist es wahrscheinlicher, dass COVID-19 tiefer geht als Viren wie wir diese von einer normalen Influenza
(Erkältung / Grippe) her kennen.
Es sei nun zu beachten, dass es zwischen Influenzer und Influencer einen erheblichen Unterschied gibt. Siehe Variable Schinkenbrot – wobei manche eben so Dumm wie jenes Brot sind. Bei der Veganer-Variante entfällt selbstverständlich der Schinken.
Die Lunge kann sich folglich durch die virale Proteine entzünden, welches zu Atmen beschwerten führt und die sich dann in einer Lungenentzündung zeigt.

Wenn nun bei einem Patienteneine Computertomographie vom Brustkorb vorgenommen wird, wird ein Schatten oder fleckige Bereiche – die so genannte „Mattigkeit“, sichtbar.

Bei den meisten Menschen, die sich mit SARS-CoV-2 infizierten, enden die Symptome mit Husten und Fieber. Mehr als 8 von 10 Fällen verlaufen mild. Bei einigen Menschen verläuft die Infektion jedoch schwerer. Etwa 5 bis 8 Tage nach Beginn der Symptome leiden sie unter Dyspnoe (umgangssprachlich auch Kurzatmigkeit. Aber dies muss ich Ein paar Tage später beginnt das akute Atemnotsyndrom (ARDS).

Das ARDS kann zu schneller Atmung, schnellem Herzschlag, Schwindel und Schweißausbrüchen führen. Es schädigt das Gewebe und die Blutgefäße in den Lungenbläschen, so dass sich in ihnen Ablagerungen ansammeln. Dadurch wird das Atmen erschwert oder sogar unmöglich.

Viele Menschen, die an ARDS erkranken, benötigen Hilfe beim Atmen durch ein Gerät, welches als Beatmungsgerät bezeichnet wird.

Wenn sich nun in Folge der Erkrankung Flüssigkeit in der Lunge ansammelt, transportiert diese weniger Sauerstoff ins Blut. Folglich werden Organe nicht mehr mit Sauerstoff (der Sauerstoffsättigung)
angereichertes Blut versorgt. Jener Sauerstoff ist für den Menschen lebensnotwendig. Weder Alter noch Geschlecht beeinflussen die Sauerstoffsättigung. Die Werte bei gesunden Menschen sollten zwischen 90 und 99 Prozent liegen.
Der Sauerstoffpartialdruck im Blut ist hingegen abhängig vom Alter und wird entweder in kPa oder mmHg gemessen. Junge Erwachsene zeigen in der Regel einen spO2-Wert von etwa 96 mmHg (entspricht 12,8 kPa). Im Laufe des Lebens nimmt der Partialdruck ab und liegt bei einem 80-Jährigen bei etwa 75 mmHg (entspricht 10 kPa).

Im Abstract heißt es schließlich, dass Nieren, Lunge und Leber versagen und nicht mehr funktionieren – können, was folglich zu langzeit Schädigung des Organismus führt.
Da mittlerweile auch bekannt ist, dass Schädigung an Herz und Gehirn zu Folge haben, sollte man Sars-CoV-2 ernst nehmen und nicht mit Influenza gleichsetzen.
Nicht jede Infektion mit Sars-CoV-2 ist tödlich! Die aktuellen Zahlen (Stand November 2021 von 5.12 Millionen Todesfälle sprechen für sich.

Viren gab es schon immer auf der Welt

Nun noch einen Anhang über Bestätigte Fälle und Todesfälle einiger uns bekannten Viren.

– Das Marburg-Virus wurde 1967 entdeckt und brachte 466 bestätigte Fälle, bei denen
373 tödlich endeten. Das Marburg-Virus wurde in 11 Länder der Welt nachgewiesen.

– Ebola wurde 1976 entdeckt und wurde in 33.577  Fällen bestätigt, wovon 13.562 tödlich verliefen. Ebola wurde in 9 Ländern der Welt nachgewiesen.

– 1997 wurde H5N1 entdeckt. Bei der sogenannten „Vogelgrippe“ gab es 861 bestätigte Fälle, wovon 455 tödlich verliefen. Der H5N1 wurde in 18 nachgewiesen.

– Das Nipah henipavirus, welches in Asien vorkommt, löst beim Menschen eine häufig tödlich verlaufende Gehirnentzündung hervor. Dieses Virus wird durch Kontakt mit Körperflüssigkeiten und -ausscheidungen infizierter Tiere und Menschen übertragen. 1998 wurden 513 Fälle in 2 Länder gemeldet, bei denen
398 Menschen ihr Leben verloren.

– H1N1 wurde 2009 publik und unter der Bezeichnung Schweinegrippe bekannt. Damals wurden in 214 Länder der Welt circa.630.000 Fälle registriert. Bei  dieser Epidemie starben 284.500 Menschen.

– Der MERS- Virus folgte 2012. Dieser Virus wurde in 28 Länder mit 2.494 Infizierter und 858 Todesfälle registriert.

– Im Jahr daruf kam H7N9 – auch dieser Virus wurde als Vogelgrippe bekannt. In 3 Länder wurden 1.568 Menschen infiziert, wovon 616 mit tödlichem Ausgang.


– Last but not least der uns allen bestens bekannte SARS-CoV-2 Virus. Am 11. November 2021 gibt es folgende Zahlen aus 192 Länder. 251.672.962 Menschen sind bis dato mit diesem Virus infiziert. Die Todesfälle betragen 5.076.863.

Dr. rer. nat. Patricia Lefèvre
Lyon, 18. November 2021

Quellen:

– J. Jacobs, S. Zhou, E. Dawson, et al., Discovery of Non-covalent Inhibitors of the SARS Main Proteinase 3CLpro, Probe Reports from the NIH Molecular Libraries
Program, National Center for Biotechnology Information (US), Bethesda (MD), 2010. PMID: 23658941

– Journal of Pharmaceutical Analysis

– K. Anand, J. Ziebuhr, P. Wadhwani, et al., Coronavirus main proteinase
(3CLpro) structure: basis for design of anti-SARS drugs, Science 300 (2003) 1763-1769

– Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Olomouc, Czech Republic
– Laboratoire of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom

– T. Castrignano, P.D. De Meo, D. Cozzetto, et al., The PMDB protein model database, Nucleic Acids Res. 34 (2006)

– V. Kumar, K.P. Tan, Y.M. Wang, et al., Identification, synthesis and evaluation of SARS-CoV and MERS-CoV 3C-like protease inhibitors, Bioorg. Med. Chem.

– X. Xu, P. Chen, J. Wang, et al., Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human
transmission, Sci. China Life Sci. 63 (2020) 457e460

Was Sars-CoV-2 im Gehirn anrichtet

Klar ist: Das Coronavirus kann auch ins gut geschützte Gehirn vordringen. Wie und wo es dort Unheil anrichtet, ist allerdings noch kaum verstanden. Jetzt gibt es neue Erkenntnisse.

von Gary Stix

Der Ausdruck »Brain Fog« – frei übersetzt »benebeltes Gehirn« – ist keine offizielle medizinische Bezeichnung. Aber er beschreibt treffend ein Phänomen, das bei Krankheiten wie multipler Sklerose, Krebs oder chronischer Müdigkeit auftreten kann: die Unfähigkeit, klar denken zu können. Die Corona-Pandemie katapultierte den Begriff jetzt wieder in die Schlagzeilen. Denn Berichten zufolge stellt sich »Brain Fog« auch bei Menschen ein, die an Covid-19 erkrankt waren.
Covid-19 kann im Hirn weit mehr anrichten, als nur verschwommenes Denken. Die Symptome reichen von Kopfschmerzen, Angstzuständen, Depressionen, Halluzinationen und lebhaften Träumen bis hin zu den bekannten Geruchs- und Geschmacksanomalien. Auch Schlaganfälle und Krampfanfälle stehen auf der Liste. Eine Studie ergab, dass es bei mehr als 80 Prozent der untersuchten Corona-Patienten zu neurologischen Komplikationen kam.

Experten diskutieren Erklärungsansätze

Wie das Virus ins eigentlich gut geschützte Gehirn eindringt und sich dort breitmacht, erforschen Wissenschaftlerinnen und Wissenschaftler derzeit intensiv. Auf der 50. Jahrestagung der Society for Neuroscience (SFN), die Anfang November 2021 nach einer Pandemiepause in virtueller Form stattfand, wurden noch nicht veröffentlichte Forschungsergebnisse vorgestellt. Sie vollziehen nach, auf welchem Weg das Virus ins neuronale Sperrgebiet vordringt, wie es Zellen befällt, sich ausbreitet und die Hirnfunktion beeinträchtigt.

Besonders rätseln die Fachleute, wie sich Sars-CoV-2 Zutritt zu den Nervenzellen verschafft. Diesen Zellen fehlt nämlich das molekulare Einfallstor, mit denen das Coronavirus zum Beispiel Lungenzellen knackt. Bereits im Jahr 2020 schlug eine Forschergruppe in einer in »Science« veröffentlichten Studie eine Alternative vor. Sie zeigten, dass der Oberflächenrezeptor mit dem Kürzel NRP1, der auf Nervenzellen des Gehirns und der Riechbahn vorkommt, gemeinsam mit einem Enzym namens Furin dem Virus einen Weg in die Zelle öffnet.

Ob Sars-CoV-2 aber tatsächlich diesen Weg nimmt, ist weiterhin unklar. Auf einer Pressekonferenz des SFN 2021 berichteten Forscher des All India Institute of Medical Sciences-Patna immerhin über eine Computeranalyse von Gen- und Proteindaten, die zeigte, dass NRP1 und Furin auf Zellen in einigen Hirnregionen vorhanden sind – insbesondere im Hippocampus, dem wichtigsten Gedächtnis- und Lernzentrum.

Einschleusen über das periphere Nervensystem

Ein weiteres Portal könnte das periphere Nervensystem sein, das den gesamte Körper durchzieht und Signale vom und zum Gehirn weiterleitet. Jonathan Joyce, Doktorand im Labor von Andrea Bertke an der Virginia Polytechnic Institute and State University in den USA, erläuterte auf der Konferenz, wie sein Forschungsteam Mäuse mit dem Sars-CoV-2-Virus infizierte und dann Teile des Virus und seines Bauplans in peripheren Neuronenbahnen fand, die man bislang nicht auf dem Schirm hatte. Über sie könnte das Virus ins Gehirn gelangen. Und womöglich stecken diese Nerven auch hinter den Nervenschmerzen und dem Kribbeln, von denen einige Covid-19-Patienten betroffen sind, erläuterte Joyce auf der Konferenz.

Ein Konsens darüber, was genau bei einer Invasion von Sars-CoV-2 ins Gehirn geschieht, gibt es aber bislang noch nicht. Dass das Coronavirus tatsächlich Neurone infiziert, sei immer noch nicht abschließend belegt, sagte etwa Walter J. Koroshetz, Direktor des US-amerikanischen National Institute of Neurological Disorders and Stroke in Bethesda, Maryland, auf einer separaten Presseveranstaltung des SFN 2021. Entzündungen im Gehirn, Löcher in der Blut-Hirn-Schranke oder absterbende Zellen der Schleimhaut, die auch benachbarte Neurone in den Abgrund reißen – all das wurde bereits von Fachleuten als Erklärung vorgeschlagen.

Wohin geht Sars-CoV-2 im Hirn?

Auch ist noch zu klären, wohin das Virus im Gehirn wandert. John H. Morrison, Professor für Neurologie an der University of California und Direktor des dortigen Primatenforschungszentrums an der Davis School of Medicine, erforscht an Rhesusaffen, wie sich das Virus im Gehirn ausbreitet. In einer Studie infizierten er und seine Mitarbeiter Rhesusaffen mit Sars-CoV-2 – darunter einige mit Diabetes. Nach einer Woche fanden sie Proteine und genetisches Material des Virus in verschiedenen Regionen der Großhirnrinde, insbesondere bei den diabetischen Tieren. Das Team entdeckte darüber hinaus, dass die Entzündung im olfaktorischen Kortex gleichzeitig mit dem Absterben von Neuronen auftrat. Morrison vermutet nun, dass die neurologischen Symptome von Covid-19 dadurch ausgelöst werden, dass sich Viren über das olfaktorische System Zutritt verschaffen, weitere Nervenzellen befallen und sich auf andere Hirnareale ausbreiten.

Bei den diabetischen Affen fand sich das Virus auch im so genannten entorhinalen Kortex, der auch bei der Alzheimerkrankheit eine Schlüsselrolle spielt. Wenn sich dort das Virus einnistet, könnte das als Erklärung für die leichten kognitiven Beeinträchtigungen und Demenz bei Covid-Kranken taugen.

Veränderte Hirnaktivität durch Covid-19

Dass selbst milde Verläufe die Hirnaktivität verändern können, zeigten EEG-Messungen, die an mehreren kanadischen Forschungseinrichtungen durchgeführt wurden. Die Wissenschaftler hatten dazu 42 Personen untersucht, die positiv getestet und dann zu Hause unter Quarantäne gestellt worden waren. Die Vergleichsgruppe bestand aus 14 Teilnehmern, die zwar grippeähnliche Symptome hatten, aber kein positives Covid-19-Testergebnis.

Rund vier Monate nach der Erkrankung war die durchschnittliche Stärke der Hirnströme in der Covid-19-Gruppe niedriger als bei den Kontrollteilnehmern. Weitere acht Monate später war der Effekt teilweise wieder verschwunden, doch die Gruppe der Covid-19-Patienten als Ganzes hatte auch dann noch niedrigere Werte als die Kontrollgruppe. Womöglich wirke sich die Kombination aus einer Coronavirus-Infektion und sozialer Distanzierung langfristig aus, vermutet die Gruppe.

»Der direkte Effekt, den Covid-19 auf die EEG-Leistung zu haben scheint, ist analog zu denjenigen Effekten, die wir bei Menschen mit einer leichten kognitiven Beeinträchtigung sehen, die sich zur Alzheimerkrankheit und verwandten Demenzerkrankungen entwickeln kann«, sagt Allison B. Sekuler, leitende Wissenschaftlerin am kanadischen Rotman Research Institute. »Das heißt nun nicht unbedingt, dass jeder Covid-Patient am Ende an Alzheimer erkrankt.« Aber es lohne sich angesichts dieser Ergebnisse weiter zu untersuchen, ob Covid-19 auch das Demenzrisiko erhöhe.

Viele Fragen offen

Die Neurowissenschaftlerin Rita Balice-Gordon sieht »enorme Fortschritte«, die in den vergangenen 20 Monaten beim Verständnis der Interaktion von Zentralnervensystem und Sars-CoV-2 gemacht wurden. Freilich würden viele Fragen noch offen bleiben: Wie lange kann die Infektion dauern? Wie lange halten die neurologischen und psychiatrischen Symptome von Covid-19 an? Und auch die Frage nach dem Risiko für Demenz und anderen Komplikationen wirft die Expertin auf, die als Geschäftsführerin von Muna Therapeutics an der Entwicklung von Therapien beteiligt ist und eine Presseveranstaltung der Fachtagung moderierte.

Fest steht: Die Pandemie hat für eine zunehmende Kooperation zwischen Virologen und Neurowissenschaftlern gesorgt. Sie erinnert daran, dass das Gehirn trotz der Blut-Hirn-Schranke keineswegs unerreichbar ist. Unter anderem können auch Coxsackie-, Polio-, Varizellen-, Epstein-Barr- und Adenoviren in Gehirnzellen eindringen. Adenoviren werden sogar für Gentherapien im Gehirn eingesetzt. Daher sind die unterschiedlichen Wege, auf denen Viren ins menschliche Denkorgan gelangen und dort Schaden anrichten können, von hohem Interesse für die Wissenschaft und Medizin. »Das ist ein großes Thema«, findet auch Morrison. Sie glaubt, dass die Neurovirologie ein äußerst wichtiges Forschungsfeld für die Mitglieder der Society for Neuroscience werden wird. Noch stehe die Integration der beiden Disziplinen am Anfang. Aber bei künftigen SFN-Tagungen könnte die Neurovirologie neben Sitzungen über Langzeitgedächtnis, Synapsen und Gliazellen einen eigenständigen Platz einnehmen.

Quelle:
© Scientific American
Scientific American, »How COVID Might Sow Chaos in the Brain«, 2021

Spektrum.de